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Abstract

A robust computable approximation to the nonlinear filtering
problem for a diffusion model is treated, where the system and data
models are given by dx = f(x)dt + o(x)dz, dy = g(x)dt + dw. The
approximation (with approximation parameter h) is robust in the sense
that it is locally Lipschitz continuous in the data y(:) (sup norm)
uniformly in h and, as h + 0, it converges to the optimal filter

for the diffusion.
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1. Introduction®

Let z(:),w(-) denote two independent Wiener processes,
the second one with covariance I-t and define the processes

x(*),y(:) by the Ito equations

£1.1) dx f(x)dt + o(x)dz, x(0) arbitrary € Rr,

(1.2) dy = g(x)dt + dw, ¥l = B, vit) =B, ¢t < ¥.
where T is an arbitrary, but fixed positive number.
It is assumed for convenience that f£(-),0(-),g(-) are
bounded and continuous and the solution on Cr[O,T] (the space of
Rf -valued continuous functions on [0,T]) of (1.1) is unique in
the sense of distributions. It is also assumed that the function g(-)
has bounded and continuous first and second derivatives and
either that the range of x(*) 1is bounded or that the derivatives

of g(+) are uniformly continuous. Concerning the first condition,

see the remarks in Section 4., We use x_ and x(t) interchangeably.

t
Let F(+) denote a bounded continuous real valued function
on RY, and ?f% the o-algebra generated by Yg» 5 < t. We are
concerned with robust approximations to the conditional expectation
EtF(xt) = E[F(xt)l %E], in the sense that we want a ''good"
approximation which is a continuous function of the data y(").
Let Xx(+) denote a process which is independent of y(-),

but which induces the same measure on Cr[O,T] that x(:) does.

Then it is well known [1], [2] that w.p.1l,

+
The author gratefully acknowledges several stimulating discussions with

J.M.C. Clark, who contributed considerably to the author's understanding
of the subject.
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e t Enephis 1 st = 2
Ey F(x Jexplf,g'(x )dy - = (x, )| “du]
(1.3) EtF(xt) - '3’1: t P IO u u 2 IOIg u l -

t - 1 .t —
By expl/ge (K )dy, - 7 [ola(®,)] au)

En*t denotes expectation over x(+) given y(-).

Although stochastic differential equation representations

{1}, [2]) for EtF(xt) are known, the problem of effectively
computing or approximating EtF(Xt) is still in bad shape. Of
particular interst is a computational or approximation method

that is robust in y(:), in the sense that it is suitably continuous
in y(*), and actually approximates EtF(xt) well. Here, we
develop an interesting approach to this problem by combining the
approximation ideas in [3], [4] with the robustness ideas of

Clark in [5]. In particular, Clark showed that (1.4) is also a

version of EtF(xt) and that it is locally Lipschitz continuous

in y(-) at each y(-) = cl{o,T1 = cro0,T].

1

EgF(X)exply g(Xy) - [oyide(X,) - 7 [ole(X,) | au]

(1.4) EtF(xt) . — Z

By explyje(X,) - [ondex,) - 7 [glex,) | aw
In a formal sense, (1.4) is obtained from (1.3) by doing an inte-
gration by parts on the stochastic integral in (1.3).

In (3], Kushner developed a computational approach to optimal
control and filtering problems on diffusion models. The basic idea
was to approximate the diffusion in a particular way by an
interpolated discrete parameter Markov chain, and to show that the
minimal cost for the controlled chain converged to that for the

diffusion, as some approximation parameter went to zerc. For the

filtering problem the filter for the approximating
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chain (but using the actual observational data from (1.2)) similarly

converged to the filter for the diffusion. The interpolation times

were constant in the filtering problem in [3]. We can use the same
approximating process here aswas used in [3]. In fact the filter
approximation of [3] can be proved to be robust in the sense of
Theorem 1 also. But it is more convenient notationally to use the
continuous parameter Markov chain approximation xh(-) to x(-)
which was developed by Kushner and DiMasi ([4], Section 8) (h is
an approximation parameter, see below).

Next, let xh(-) denote any finite state continuous parameter
Markov chain, and let us consider the corresponding filtering
problem. Let the observational data available at t still be de-

noted by Yur U < L where
(1.5) dy = g(x])dt + dw.

Then it is well known ([6], [7]) that (1.3) holds w.p.l with
fh(-), xh(-) replacing x(-), x(-) resp., where fh(~) has the
same distributions as xh(o) has, but is independent of vy(:);
1.€., |

fﬁtp(ilt‘)explfgg'(iﬂ)dyu - 3 I51e x| Pau)

h
(1.6) EtF(xt) =
t ,.=h 1l ,t, =h, 2
E‘iE explfqg' (X, )dy, - 7 [ola(xy)i dul
Due to the piecewise constant nature of Eh(-), the stochastic
integral can be readily integrated by parts to yield the chain

version of (1.4):
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By F(RD) explg' (xDy, - [oyide G - 3 15| %au)

(1.7) EF(D) =
By P18 KDYy - [oyids Gl - 7 [5le | Paw)

The expression (1.7) is also ([5]) locally Lipschitz continuous in
y(-) at each y(:) ¢ CS[O,T]. In Section 2, we define a particular
chain for which (1.7) can be computed and and also converges

to (1.4) for all y(*). In Section 3, we prove the uniform
robustness result; namely that the continuity in y(-) of (1.7)

is uniform in h. This uniformity is crucial for robustness.

Some remarks on computation are made in Section 4. Let F?(y(-))

‘ and Ft(y(-)) denote the value of (1.7) and (1.4), resp., at
L yels




2. A Useful Approximating Chain {xh(-)}.

We next describe the particular approximating chain which is
to be used in Section 3. Other approximating chains can certainly
be used. The main criteria for the choice concern the robustness
and the ease of use in computation for the filtering problem. Let
R; denote the finite difference grid on R with difference
parameter h. Either R; or a subset of it will be our state
space. Actually, h can be vector valued, the finite difference
interval depending on the direction, but we stick to the simpler
case. The transition function will be stated for the case where
a(-) = o(-)o'(-)/2 is diagonal, for notational simplicity. The
expressions for the general case are in [3, Chapter 6.2]. Define
Q, (x) = 2 g a;(x) +h §|fi(x)|, st x) = n¥/Q(x), 1et i
th

inf(la(x)| + |£f(x)|) > 0 and e; = unit vector in i coordinate
d?rection. For x € R; and y = x ¢ eih, set ph(x,y) =

[a;;(x) + hfi(x)]/Qh(x) where f£' = max(0,f], £ = max[0,-f];
for other (x,y)-pairs, set ph(x,y) = 0. Let {Eﬁ} denote the

chain with transition probabilities{ph(xﬂd}. Interpolate the chain 3

into a continuous parameter Markov process, denoted by xh(-), by

defining the interjump intervals by

h
P{jump after t + s|x2 = x} = exp - (s/At (x)).

bl ,M‘.}ﬂ:ﬁ' v

The process has the following properties (4, Section 8].

b S A

el

E[next state value - x|x = current state value] = f(x)Ath(x),

e . e

covar [next state value - X|x = current state value] = Za(x)Ath(x) + o(Ath(x))




My - X = = £a + o),

Elx

covar[xlg+A - x|x2 = x] =2a(x)A + o(2).

More details are in [3], [4]. The sequence {xh(~)} converges
weakly in Dr[O,T) to the x(°) of (1.1), where Dr[O,T] is
the space of RY valued functions on [0,T] which have left-hand
limits and are right continuous. The space is endowed with the
Skorokhod topology. The states of the process {xh(~)},{€2} only
communicate with their nearest neighbors.

Next, the main robustness theorem will be proved.




3. The Robustness Theorem.

Theorem 1. EtF(xg) given by (1.7) is continuous in the

supremum norm at each y(:) € C°[0,T], uniformly in (small) h > 0.

In fact, for each bounded set S in c®[0,T], there is a real

K(S) such that [FR(y(-)) - FIGFC0| < K(S) ||y - 71| for y(-)

and y(-) € S.
each y(-) € c5[0,T].

Proof. Let
and y(*) € S.

depending only on S

We need only show that there is a constant

such that

$ t t
Hexptyis0h) - [ yideed) - 3 jolg(xﬂ)lzdul

(3.1)

uniformly in h and

t

t
5] 5 h
: exvlytg(xt) : foy;ldg(xu) - %folg(x

t < T, We can and will

Also, (1.7) converges to (1.4) for

S denote a bounded set in CS[O,T], with y(*)

K, (8)

hy 2 s
G dul| <k ) |ly-y

t
drop the - % { Ig(xg)lzdu term, since g(+) is bounded. Then,
0

using the inequality |ex-ey| < lx-yl(ex+ey), we have the upper

bound for (3.1)
~ h e b h h . h
El (v, -5,) g (<1 - fO(yu-yu)'dg(xu)llexplygg(xt) : foygdg(xu)l
't
v explyle(xl) - J09ddg(XS)ll-

We need only show (3.2) and (3.3). K is an arbitrary constant.

2




t
(3.2} E|J yl'ldg(xl};)|2 < KZI]yHZ, uniformly in t < T and small h.
0

: t
]
1 (3.3) E exp [ q&dg(xg) bounded uniformly in bounded sets of
0
q(+) € c®[0,T] and in (small) h and t < T.
]
First, (3.2) will be proved. Let b?)],: and @(T) denote |
E

the minimal o-algebra over which g(xg), u < t, is measurable and
the Borel field over

[0, T)], resp. It is convenient to use the

decomposition

hy . +h h
(3.4) g(xt) = Mt + Ft,

where Mh(-) is a martingale and Fh(-) is a predictable process;

in particular, I‘h(t) is adapted to 032 and (as an (w,t) function),
I‘h(-) is measurable on the sub 0-algebra of @,}1} X G(T ) which
is induced by the left continuous functions. The decomposition (3.4) j

. b [¥ h
has the representation TI_ = [

is unique and Fh(o) VSds where
0

h

75 = Yh(XZ) and Yh(-) is given by

(3.5) Yh(x) =) [gly) - g(X)Jph(x,y)/Ath(X) E
y

Note that rh(-) is the unique predictable function which satisfies

h

h h h h
Errl, o - ri®M = Eged, ) - sl imh,




; h
from which T () and Yh(-) can be determined. Using a truncated
Taylor expansion on (5.5), and the properties of the chain which were
given in Section 2, and the definiton gxx(x) = Hessian of g(-)

at Xx, we can write

(3.6) Y'(x)

{[gi(x)f(x) + trace a(x)gxx(x)]Ath(x) + o(Ath(x)}/Ath(x)

n

Kgx) + el

where 82 +0 as h -+ 0 uniformly in t < T, and in x, and &

is the differential generator of (1.1). In any case IYh(x)| is
uniformly bounded in (small) h and in x. Note that Mh(.) is bounded
on [0,T], since Yh(-) and g(xh(-)) are.

Next, let us calculate the quadratic variation of Mh(.).
This is the increasing (in the sense of positive definite matrices)
matrix valued predictable function Ah(-) such that
h h

t

h,h "
Mo(M)' - AL =N

17
is a matrix valued martingale. We have A? = f ths, where
g S

+h
Ay " Ah(xg) and AP(.)  is given by

WMx) = 5 1gly) - g lgly) - g1 (x,y) /8t (x).
y

Xh(-) is obtained from the characterization of Nh(-) as being

R




the unique predictable function such that, for all ¢ >

h fion » i i e
E(AD, - a8 BN = e, o0, 0 - Moy | B

SRR N S Y
ELM, s-Mo) (M7, o-M) 1| B2

Note that |Ah(x)| is bounded uniformly in x and h.

Now, we are prepared to evaluate (3.2). Write

t t G
h y=h
foyadg(xﬁ) = Joy&dMu + foyuyudu.

10

Then (3.2) follows from the uniform boundedness of Vh(') and

h

A7(+) and the martingale inequality

t () o
E maxl] y'thl2 <4||YIIZE I arh =4IIYI|2E f Xﬁdu
oi gt Badtl e g :

We now turn to (3.3). It is convenient to bound (3.3) under

the assumption that xh(-) is stopped after the Nth jump, where N

h nﬁl h
A" = E exp f q'dg(x. ).
i=0 (16,16+68) Y -

is an arbitrary integer. The obtained bound will not depend on N.

Fix t, set t = né, where n is an integer and write (3.3) as

Let Elgé denote the expectation conditioned on 811]6 Let

4 X = x?a. There is a function o(:) which can depend on

N and h

and on the modulus of continuity of q(+) on [0,T], but is uniform

in x and is such that

{
%
:




11

| S h
Al = g oxp | aydsCe) < @ - —5— + o(e))

Lid idst) At {x)

€3.7)
+ Eh exp q! .l (x+) - g(x)] - & + 0(96)
ié P q;sl8 g S g ’
At (x)
where x' is the successor state to X, given one jump in

[i6,i6+6) and ﬁ}d is the value of q_ at the jump time in [i6,i6+6) if any.
Expanding (3.7) yields

A < a-eath) ¢ o/t ¢ 0())ER (1 letx™) - g (xD)
+ (@lslex) - g(x))) %2

+ 0 1@ s (g(x) - g(x)))%) + 0(8)

where ol(y)/y -~ 0 as y »+ 0. Thus for some Kl, independent of N,h
and x, and an o(+) with the properties of the above o(-:) function
h

A, <1+ K

3 S 16 + o0} .

Substituting this into (3.7) and letting ¢ - 0 yields

h

A" < exp KT, independently of h and N.

The last assertion of the theorem can be proved in the same

way that a similar assertion was proved in [3, Chapter 7.5] for an

interpolation of a chain similar to (&1, Q.E.D.
n
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Remarks. 1. Since (1.7) also converges to (1.3) for almost
all y(:) (Wiener measure) the theorem provides another proof of

Clarks representation (1.4) and its Lipschitz continuity.

2. The uniformity (equi Lipschitz continuity) in
the theorem is crucial to the value of the result, for otherwise

the "robustness'" could well become less and less as h - 0.

3. From an applications point of view, robustness
is important since the conditional moments should be smooth functions
of the data. Otherwise unaccounted for errors in measurement or errors

in the numerical calculation might render the result meaningless. 1

Furthermore, in applications w(+-) 1is not usually a Wiener process,
although it is convenient to use a filter designed under the

assumption that it is a Wiener process. Then the robustness idea

is that if w(:) 1is close to a Wiener process (in some pathwise sense),
then the estimates would also be close to the estimates which would be ;
obtained if w(:) were actually a Wiener process. We might lose
information by not building a filter which considers the actual
statistical structure of (non Wiener) w(-), but that filter would be

much more complicated than the one which is optimal under the Wiener

assumption.
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4. Remarks on Computation

First, let A > 0 and let us define a process to be denoted
by €h’A(-) and which is essentially xh(-), but altered so that the

jumps occur only at times iA, i =1,.... Let A < Ath(x), all x.

h,A

In particular, set Eh’A(t) = &i on [iA,iA+A), where {EQ’A}

is a Markov chain on the state space Rﬁ with transition

p;oZabilities p?;?y)h Z p?x,y)(A/Ath(x)) ioz y = xtemh and
L e y=x§e.hp(§’Y)' The process & ’"(:) converges weakly
i

to x(:) as h, A > 0.

Let Eh’A(~) be independent of y(-) but have the same path
distributions as éh’A(') does. Then with Eh’A(-) replacing fh(-)
in (1.6), it is shown in [3, Chapter 7.5] that (1.6) converges to !
(1.3) for almost all y(-) (Wiener measures), :

The method used in the proof of the theorem can also be used %?
with the approximation £h’A(-) replacing the approximation xh(-). |

Then both T%(-) and A%(.) will still be predictable, but will be

piecewise constant in the [iA,iA+A) intervals, and the theorem will f‘
continue to hold. Furthermore the difference between (1.6) evaluated 1
with xh(-), and with Eh’A('), goes to zero as A, h ~ 0, uniformly

in bounded y(°) sets.

In order to have a computationally feasible method for getting

values of (1.6), the state space must be finite. Let G be a closed hyper- é.

.
rectangle in R and set Gy = R; "G, Let T = inf{t: X, € 3G}, %H
it = infit: Xy £ G}, and let u denote the measure of Xge Suppose |

that 09G, the boundary of G, is regular in the sense that

P{TaT=TnT)=1. Let (),%x0),8M8 (4)  denote the

processes stopped on first exit from G. Then the theorem remains




P

valid for these processes replacing xh('),x(-),ﬁh’A(') (then

x(+) and fh'A(-) are also replaced by the stopped processes).

With the use of the stopped process, the state space Gh is finite
and the method of (3, Chapter 7.5] can be used-with the £h’A(-)
approximation. Alternatively, we can use a method of Clark. In (5],
Clark gave a set of ordinary differential equations (not Ito equations)
for realizing (1.7), and the solution of this set, when considered as

a function of y(-+), has the same robustness property as (1.7) has.
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